Онлайн

Наглядная физика. Магнетизм


Опыт Эрстеда

1

Модель наглядно демонстрирует известный опыт X. Эрстеда, впервые показавшего действие электрического тока на магнитную стрелку, находящуюся вблизи проводника с током. Можно изменять силу и направление тока, отклоняющего магнитную стрелку.

  

Подробнее

 На рис. 1 показана схема опыта датского ученого X. Эрстеда, впервые обнаружившего в 1820 году действие электрического тока на магнит. В этом опыте магнитная стрелка отклонялась при пропускании тока по прямолинейному проводнику, расположенному над стрелкой. 

Действие проводника с током на магнитную стрелку, находящуюся вблизи этого проводника, определяется не только силой тока (например, как в законе Кулона сила зависит от расстояния), но и от взаимного расположения тока и стрелки. Будет ли действие обратно пропорционально квадрату расстояния? Как оно зависит от силы тока в проводнике, от взаимной ориентации проводника и стрелки?

1.01Рис 1.  Вблизи провода с током (здесь показан только отрезок провода без остальных, подводящих к нему ток проводов) магнитные стрелки ориентируются перпендикулярно к направлению провода. Показана окружность, лежащая в плоскости, перпендикулярной проводу. Магнитная стрелка над проводом направлена противоположно стрелке под проводом. Для выбора правильного направления стрелок можно указать направление на окружности, которое определяется правилом буравчика: буравчик крутят так, чтобы он вкручивался в направлении тока I, и тогда движение концов ручки буравчика укажет нужное направление на окружностях. 

Чтобы записать закон взаимодействия магнитной стрелки с магнитным полем, аналогичный закону взаимодействия электрического заряда с электрическим полем F=q E, нужно ввести единицу измерения для "силы намагниченности" магнитных стрелок, но сила будет зависеть также и от размеров, и от формы стрелки. Поэтому в электромагнетизме используют другой элементарный "источник поля"- отрезок провода Δl (векторная величина) и ток I в этом проводе, мысленно пренебрегая силами и полями, связанными с проводами, подводящими ток к нашему элементарному току I Δl.

Магнитное поле в точке пространства M характеризуется вектором B, направленным вдоль магнитной стрелки, (мысленно помещённой в точку M и имеющей возможность свободно поворачиваться вокруг точки M). А длина вектора B характеризует "силу" магнитного поля в точке M: чем сильнее поле, тем длиннее вектор. В некотором смысле вектор B в такой же степени характеризует магнитное поле, в какой вектор напряжённости E характеризует электрическое поле.

Магнитное поле можно наглядно изобразить с помощью линий магнитного поля. (Их называют также линиями индукции магнитного поля, линиями вектора B или силовыми линиями магнитного поля.) Эти линии строятся для B  так же, как и линии электрического поля для E: касательная к линии  магнитного поля в каждой точке совпадает с направлением вектора B, а густота линий пропорциональна модулю B вектора B в данном месте поля. На рис. 1 показана линия магнитного поля прямого провода. Стрелки на ней указывают направление касательных к ней векторов B. Магнитные стрелки ориентируются вдоль линии магнитного поля, но лишь приближённо, из-за своего большого размера относительно неоднородностей поля.

В начале опыта Эрстеда ток равен нулю и магнитная стрелка направлена вдоль линии магнитного поля Земли. Приближённо можно считать, что магнитное поле Земли создаётся постоянным магнитом, помещённым внутри земного шара вдоль оси вращения Земли. Северный полюс этого магнита находится в южном полушарии, а южный - в северном, см. рис. 2. Поскольку одноимённые полюсы магнита отталкиваются, а разноимённые притягиваются, то магнитная стрелка в магнитном поле Земли своим северным (синим) концом направлена на Север, а южным (красным) - на Юг. Маленькая (по сравнению с неоднородностями магнитного поля) магнитная стрелка ориентируется вдоль линии магнитного поля.

1.02

 Рис. 2. Схематическое изображение линий магнитного поля Земли и расположение в нём магнитных стрелок. На большей части земной поверхности линии магнитного поля Земли практически горизонтальны, а над полюсами - вертикальны. 

После включения тока магнитное поле в окружающем проводник пространстве является суммой магнитного поля Земли и магнитного поля, создаваемого проводником с током. При сильном токе магнитным полем Земли вблизи проводника можно пренебречь. 


Сила Ампера

2

На проводник с током, находящийся в магнитном поле, действует сила, которая определяется полем в том месте, где расположен проводник, силой тока в проводнике и направлением проводника. Направление силы определяется правилом буравчика. Модель объясняет эту сложную зависимость силы от остальных параметров.

Подробнее

На проводник с током, находящийся в магнитном поле, действует сила, которая определяется только свойствами поля в том месте, где расположен проводник, и не зависит от вида источников этого магнитного поля.

Рассмотрим небольшой элемент проводника с током длины Δl как вектор Δl, направление которого совпадает с направлением тока в проводнике. Cила F, действующая на такой элемент со стороны магнитного поля, перпендикулярна к плоскости, в которой лежат вектор Δl и вектор магнитной индукции B, причем вращение по кратчайшему расстоянию от Δl к B связано с направлением силы F правилом буравчика (см. рис. 1).  Векторы Δl и B лежат в плоскости рисунка, вектор F направлен от нас перпендикулярно к плоскости  рисунка).

2.01

Рис. 1. Сила F, действующая на проводник с током в магнитном поле с индукцией B.

Согласно закону Ампера модуль F магнитной силы F определяется  формулой

m1

где I - сила тока в проводнике, остальные величины те же, что на рис. 1. Из формулы (1) следует, что в случае, когда проводник расположен вдоль линий поля (α = 0),
сила равна нулю.

В простейшем случае, когда проводник с током и поле взаимно перпендикулярны (α =Π/2)для определения направления магнитной силы можно воспользоваться правилом левой руки: если расположить левую руку так, чтобы направление четырех вытянутых пальцев указывало направление тока, а магнитные линии «входили» в ладонь, то отставленный в сторону большой палец укажет направление силы.

Единицей магнитной индукции в системе СИ является тесла (Тл). В однородном магнитном поле с индукцией 1 Тл на 1 м длины перпендикулярного к вектору B прямого провода, по которому течет ток 1 А, действует сила 1 Н:

1Н = 1А·м·1Тл;   отсюда   1Тл = 1Н/(А·м).

Сила тока в металлическом проводнике имеет вид

   I =nevS,

где n - число свободных электронов в единице объема (плотность свободных электронов), e - заряд электрона, v - его скорость, S - площадь поперечного сечения проводника. Подставив это выражение в формулу (1), получим
m12
Произведение nSΔl дает число движущихся зарядов N в элементе Δl проводника. Магнитная сила действует именно на эти заряды, а уже от них передается кристаллической решетке вещества, из которого изготовлен проводник. Поэтому, разделив F на число зарядов N, мы получим магнитную силу, действующую на отдельный заряд e, движущийся со скоростью v

m13

Эта формула справедлива не только для электронов, но и для любого точечного заряда q:

m14

2.02

Рис. 2. Сила F, действующая на заряд q, движущийся со скоростью v в магнитном поле с индукцией B.
Направление силы F связано с векторами v и B совершенно аналогично тому, как направление силы F связано с векторами Δl и B на рис. 1. Обратите внимание, что вектор Δl на рис. 1 направлен по току, т. е. в направлении движения положительных зарядов, для отрицательных зарядов направление силы F, определенной по формуле (2), изменится на противоположное.



Взаимодействие проводников с током

3

 Модель наглядно демонстрирует взаимодействие двух параллельных проводников с токам. Показано магнитное поле, создаваемое этими токами, и силы взаимодействия. Величины и направления токов можно изменять.

  

Подробнее

 Покоящиеся заряды взаимодействуют посредством электрического поля. Это взаимодействие сохраняется и при движении зарядов, но в этом случае возникает еще и магнитное взаимодействие, которое осуществляется магнитным полем, создаваемым движущимися зарядами. 

Магнитное поле порождается движущимися зарядами, т. е. токами. Возникшее поле действует на другие движущиеся заряды и токи. Так возникает взаимодействие токов и движущихся зарядов.  Магнитное поле в данной точке пространства характеризуется векторной величиной B,которую называют магнитной индукцией поля.

Прямой проводник бесконечной длины с током I1 создаёт магнитное поле, модуль индукции которого B на расстоянии r от проводника равна

m31

где m32 Гн/м -магнитная постоянная, см. рис. 1. Если второй такой же проводник с током I2 помещён на расстоянии r от первого проводника, то сила F, действующая на отрезок длины Δ l второго проводника равна

m33

где r - расстояние между проводниками. Здесь тонким считается проводник, толщина которого много меньше расстояния r между проводами. В случае проводников конечной длины формула (2) справедлива для участков, удаленных от концов проводников на расстояние, значительно большее r.

3.1
Рис1.График изменения модуля магнитной индукции внутри и вне прямого длинного провода круглого поперечного сечения радиуса a. Внутри проводника B(r) пропорционально r, r< aВне проводника индукция определяется формулой (1), r≥a. На графике условно показано поперечное сечение проводника. Для магнитного поля выполняется принцип суперпозиции: поле, созданное несколькими источниками равно сумме полей, созданных каждым источником (без учёта остальных).
На рис. 2 показан график магнитного поля B(x) двух параллельных и очень длинных проводников с током I.

 3.2

3.3

Рис 2. Зависимость индукции магнитного поля двух параллельных проводников от положения точки относительно проводников (от координаты x). Здесь положительное значение B(x) означает, что вектор B(x) направлен вверх, а отрицательное - что вектор B(x) направлен вниз. Одинаково направленные токи притягиваются, а встречные - отталкиваются. Обратите внимание, что проводник с током взаимодействует только с магнитным полем, созданным другим проводником, а его взаимодействие с собственным магнитным полем здесь не рассматривается. На обоих графиках штриховой линией показано поле, создаваемое только правым проводником, именно оно определяет силу, действующую на левый проводник. а) Токи в одном направлении. Над левым проводником показано, как определяется направление силы F по закону Ампера, все углы между векторами - прямые. б) Токи в противоположных направлениях.




Магнитное поле проводников с током

4Модель наглядно демонстрирует магнитные поля, создаваемые прямым проводом и витком провода с током.

 

 

Подробнее

Магнитная индукция B поля бесконечного прямого проводника с током I на расстоянии r от проводника равна 

m41

 

(кратко говорят «магнитная индукция B прямого тока»). Эта формула для магнитной индукции поля годится не только для бесконечных проводников. Практически эта формула (1) применима для вычисления B в точках, расположенных в окрестности середины проводника конечной длины l, для которых расстояние r много меньше длины проводника (r<<l).

4.3

 

 

 


Рис.1. Линии магнитного поля прямолинейного проводника с током изображается окружностями с центрами на оси бесконечного прямого проводника с током I являются окружностями с центрами на оси проводника, лежащими в плоскости, перпендикулярной к его оси. Показан вектор магнитной индукции магнитного поля в точке M, находящейся на расстоянии r от провода.
Вблизи провода линии расположены гуще, т. к. поле с увеличением расстояния r убывает по формуле (1).
Вектор B касателен к окружности, а его направление определяется по правилу буравчика: если ввинчивать буравчик вдоль проводника по направлению тока (синяя стрелка), ось буравчика перемещается по току, то вращение ручки буравчика (красная стрелка) покажет направление магнитного поля.

Разделив соотношение (1) на μ μ0, получим выражение для напряженности H магнитного поля прямого тока. Из этой формулы следует,  что единицей напряженности магнитного поля  является  ампер на метр  (А/м). С формулой (1) связано определение единицы силы тока ампера, являющейся одной из основных в системе СИ. Ампер равен силе не изменяющегося тока, который при прохождении по двум параллельным проводникам бесконечной длины и ничтожно малой площади поперечного сечения, расположенным в вакууме на расстоянии 1 м один от другого, создаёт на каждом участке проводника длины 1 м силу взаимодействия m42 Н. Так как проводники бесконечной длины и ничтожно малого сечения практически невыполнимы, то в реальных условиях эталон силы тока воспроизводится по измерению силы взаимодействия катушек с током (на так называемых токовых весах), а затем вводятся поправки, учитывающие размеры и форму проводников. Единицей электрического заряда является кулон (Кл) — производная единица. Кулон — электрический заряд, протекающий через поперечное сечение проводника в течение 1 с при силе постоянного тока 1 А.

4.4

 


Рис2. Поперечное сечение  кругового проводника с током I. Крестик и точка на сечениях проводника обозначают направление тока I:  крестик - это вид "хвостового оперения" стрелки, обозначающей ток Iа точка - носик (остриё) этой стрелки. Линии магнитного поля изображается окружностями с центрами на оси бесконечного прямого проводника с током являются замкнутыми линиями, охватывающими провод, и лежат в плоскости, проходящей через ось витка. Ось витка является линией магнитного поля и принято считать, что она замыкается в "бесконечно удалённой точке". Величина вектора магнитной индукции магнитного поля в точке M пропорциональна "густоте" линий поля, находящейся на расстоянии r от провода. Вблизи провода линии расположены гуще, т. к. поле вблизи провода примерно определяется формулой (1). С увеличением расстояния r от провода индукция магнитного поля убывает. Вектор B касателен к линиям поля, а его направление определяется по правилу буравчика: если ввинчивать буравчик вдоль ближайшего участка проводника, то вращение ручки буравчика покажет примерное направлене магнитного поля (см. рис. 1). Зависимость вектора индукции B от точки очень сложно, но величина индукции в центре витка даётся простой формулой:


m43


где r - радиус витка (отличается от (1) лишь отсутствием Π в знаменателе). Вектор B в центре витка показан красным цветом.



Магнитное поле катушки с током

5

 Модель наглядно демонстрирует магнитное поле катушки (соленоида) с током. Поле показано как вне катушки, так и внутри.

 

 

Подробнее

 В катушке витки навиты на цилиндрическую поверхность вплотную друг к другу, причём равномерно, т. е.  число витков на участке катушки длиной l пропорционально l и коэффициент пропорциональности не зависит от выбора участка катушки. Если длина катушки бесконечна (или её длина значительно больше других размеров или расстояний), то магнитное поле внутри катушки можно считать однородным, а полем вне катушки можно пренебречь. Величина индукции магнитного поля B внутри бесконечно длинной катушки определяется формулой

m51

где w -число витков на участке катушки длиной l. Магнитное поле катушки зависит только от произведения Iω и это значит, что одно и то же поле можно получить, либо при большом токе, но малом числе витков, либо при малом токе, но большом числе витков.

5.1
Рис. Поперечное сечение  катушки с током I. Крестик и точка на сечениях проводов обозначают направление тока I: крестик -это вид "хвостового оперения" стрелки, обозначающей ток I, а точка -носик (остриё) этой стрелки. Линии магнитного поля изображается окружностями с центрами на оси бесконечного прямого проводника с током являются замкнутыми линиями, охватывающими провод, и лежат в плоскости, проходящей через ось катушки. Ось катушки является линией магнитного поля и принято считать, что она замыкается в "бесконечно удалённой точке". В идеальном случае бесконечно длинной катушки все линии магнитного поля являются прямыми и расположены внутри катушки параллельно её оси. Поле внутри катушки однородно (т. е. одинаково во всех точках внутри катушки). Вектор B в точке внутри катушки показан красным цветом. В катушке конечной длины однородность поля нарушается вблизи концов катушки. На концах катушки линии поля выходят из катушки, сильно расходятся, а затем сходятся и заходят внутрь катушки с другой стороны. Величина вектора магнитной индукции магнитного поля в точке M пропорциональна "густоте" линий поля, находящейся на расстоянии r от провода. Вектор B касателен к линиям поля, а его направление определяется по правилу буравчика: если ввинчивать буравчик вдоль ближайшего участка витка, то вращение ручки буравчика покажет примерное направлене магнитного поля. Условно показана ручка буравчика и красные стрелки, указывающие направление её вращения, при котором буравчик ввинчивается/вывинчивается в направлении тока. Ось буравчика перпендикулярна плоскости рисунка. Видно, что движение концов ручки согласовано с направлением линий магнитного поля, проходящих вблизи буравчика.




Электромагнитная индукция

6

 Модель наглядно демонстрирует явление электромагнитной индукции: при изменении магнитного потока через замкнутый проводник, в проводнике возникает электродвижущая сила индукции. Замыкая и размыкая ключ в цепи первой катушки, мы создаем переменное магнитное поле во второй катушке. Ток индукции вызывает отклонение стрелки гальванометра. Число витков второй катушки можно изменять.

Подробнее

Явление электромагнитной индукции состоит в том, что при изменении магнитного потока через замкнутый контур проводника, в проводнике возникает электродвижущая сила (ЭДС) индукции, вызывающая появление электрического тока, который называется индукционным. ЭДС индукции возникает также и в незамкнутом проводнике при его движении в магнитном поле, если проводник пересекает линии магнитного поля.

Явление электромагнитной индукции было открыто М. Фарадеем в 1831 г. В то время уже существовало мнение, что магнитное поле очень похоже на электрическое. При постановке опытов Фарадей полагал, что если электрический ток создает магнитное поле (опыт Эрстеда), то и обратно, изменяющееся магнитное поле может создавать электрический ток. Опыты Фарадея по электромагнитной индукции показали, что ЭДС индукции возникает в катушке при изменении магнитного потока Φ через катушку, причём независимо от причин, вызывающих это изменение.

6.1
а) Изменение магнитного потока в катушке L при перемещении магнита. Катушка L, соединена с  измерительным прибором (миллиамперметром, у которого нейтральное положение стрелки находится в центре шкалы). Если достаточно быстро вдвигать или выдвигать магнит, то стрелка прибора отклоняется. Когда движение магнита прекращается, стрелка прибора не отклоняется (показывает нуль). Тот же результат получается, если надвигать катушку L на неподвижный магнит. б) Изменение магнитного потока в катушке L при включении или выключении тока в близко расположенной катушке L2Магнитное поле в катушке можно изменять, изменяя ток в расположенной поблизости другой катушке. На катушку L2, включенную в цепь источника тока GB, надета катушка Lсоединённая с измерительным прибором (рис. 1 б).
Катушки L и L2 могут также иметь общий ферромагнитный сердечник, как в трансформаторе. При изменении силы тока в катушке L2 при замыкании или размыкании выключателя катушка L2 создаёт изменяющееся магнитное поле и в катушке L возникает индукционный ток, направление которого зависит от того, увеличивается или уменьшается сила тока в катушке L2, а также от взаимной ориентации катушек. Магнитное поле в катушке можно изменять двигая магнит. То же происходит при замыкании и размыкании цепи катушки 2. Такое замыкание и размыкание цепи изменяет силу тока в катушке 2.

Потоком магнитной индукции или, просто, магнитным потокомчерез поверхность S, расположенную в однородном магнитном поле, называется величина

m61

где B - индукция (однородного) магнитного поля, S -  плоская поверхность Sориентированная так, что нормаль n к поверхности образует с направлением вектора B угол φ (см. рис. 2).

6.2
Рис.2. Поток φ магнитной индукции через поверхность S равен m62 где B - индукция однородного магнитного поля, S -  площадь плоской поверхности S, α - угол между нормалью n к поверхности и вектором BЕсли проводить линии магнитного поля с густотой, численно равной B,  то поток Φ через поверхность S будет численно равен числу линий поля, пронизывающих поверхность SЕдиницей магнитного потока является вебер (сокращённо Вб). Из равенства (1) следует, что 1 Вб =1Тл·м².

Если поле неоднородно или поверхность S не плоская, то для вычисления магнитного потока поверхность S разбивают на такие малые элементы ΔSiчто каждый из них можно считать плоским, а поле около каждого из них - однородным. Тогда элементарный поток через элемент поверхности m63 а полный поток получится суммированием элементарных потоков:

m64
В этой формуле величины Bi и cos(αi) имеют, вообще говоря, различные значения для  различных площадок (т. е. зависят от индексов i), а эта сумма, вообще говоря, зависит от разбиения, но если разбиение очень мелкое, то зависимость Φ от разбиения незначительна. Во многих случаях достататочно вычислить поток приблизительно.

Так, например, вычисляют магнитный поток через катушку равен сумме потоков через каждый виток катушки. Если магнитное поле вдоль катушки не меняется (однородно), то магнитный поток Φ через катушку равен Φ=Φ1wгде Φ1 - магнитный поток через один виток катушки, w - число витков в катушке. ЭДС индукции в катушке возникает при изменении магнитного потока Φ через катушку.


ЭДС индукции

7

Электродвижущая сила (ЭДС) индукции в контуре определяется скоростью изменения магнитного потока через этот контур. Модель демонстрирует возникновение ЭДС индукции в катушке, в которую можно с различными скоростями вдвигать постоянный магнит. Можно изменять число витков в катушке. Отклонение стрелки гальванометра позволяет судить о величине и направлении возникающей ЭДС индукции.

Подробнее

Зависимость ЭДС индукции от скорости изменения магнитного потока Электродвижущая сила (ЭДС) индукции ЭДС индукции в катушке возникает при изменении магнитного потока Φ. через катушку. ЭДС индукции в замкнутом контуре равна скорости изменения магнитного потока Φ, пронизывающего этот контур:
m71
Знак минус в этой формуле означает, что если ЭДС индукции вызывает индукционный ток, то создаваемое им магнитное поле противодействует изменению магнитного потока Φ т. е. при  ΔΦ/Δt >0 ЭДС индукции E<0, и наоборот (это правило Ленца).

Если магнитного потока Φ через катушку меняется гармонически:
m72
то ЭДС индукции легко вычислить - это производная синуса по t:
m73Следовательно,  ЭДС индукции
m74
пропорциональна амплитуде Φ0частоте ω изменения Φ0, причём ЭДС сдвинута по фазе относительно Φ(t) на полупериод, т. е. на Π.

Индукционные токи возбуждаются также в сплошных проводниках при изменении внутри них магнитного поля, например в сердечниках электромагнитов. В этом случае их называют токами Фуко . В хорошо проводящих телах токи Фуко могут достигать большой силы и при этом выделяется большое количество теплоты. Токи Фуко используются, в металлургии, для прогрева металлических частей внутри вакуумных приборов с целью обезгаживания металла и т. д. В электромагнитах и трансформаторах токи Фуко нежелательны, так как они вызывают потери электроэнергии на нагревание сердечников. Для уменьшения токов Фуко сердечники делаются составными из железных полос, вследствие чего уменьшается проводимость сердечника и, следовательно, токи Фуко в нем.


ЭДС самоиндукции

8

Явление самоиндукции состоит в возникновении ЭДС индукции в проводнике при изменении в нем тока. В модели приводится график силы тока в замкнутой цепи от времени после замыкания цепи. Цепь содержит последовательно соединенные резистор, катушку и батарейку. Параметры цепи (сопротивление резистора, индуктивность катушки м ЭДС батарейки) можно изменять.

Подробнее

Ток I в контуре создаёт магнитное поле, пронизывающее поперечное сечение контура. Поток Φ магнитной индукции B через контур (точнее, его поперечное сечение) Поток Φ магнитного поля, создаваемого током I, пропрционален величине тока I:

      Φ = L I .         (1)

Коэффициент пропорциональности L когда поток Φ вычислен для того же контура, в котором распространяется ток Iназывается  индуктивностью контура. Индуктивность зависит от формы контура, его размеров и среды, окружающей контур, в которой находится проводник (точнее, создаваемое им магнитное поле).
Единицей индуктивности в СИ является генри (Гн). Индуктивностью 1 Гн обладает такой проводник, в котором при скорости изменении тока 1 ампер в секунду (А/с) возникает ЭДС самоиндукции 1 В. Из формулы (1) следует, что

1  Гн = 1 В·с/А  .

Индуктивность 1 Гн - это очень большая индуктивность, поэтому обычно используются доли генри: миллигенри (мГн) и микрогенри (мкГн).

   1 Гн = 10³ мГн

Как и ЭДС индукции, ЭДС самоиндукции равна скорости изменения магнитного потока, т. к. ЭДС индукции не зависит от причин изменения потока ΦТак как по формуле (1) магнитный поток Φ пропорционален силе тока I, Φ = LIто ЭДС самоиндукции определяется формулой

m81

где L - индуктивность катушки, знак «-» в этой формуле означает, что ЭДС препятствует изменению тока в цепи (правило Ленца). Точнее, при уменьшении тока I, а, следовательно, и создаваемого им потока Φток самоиндукции препятствует уменьшению IПри увеличении тока I, а, следовательно, и создаваемого им потока Φ, ток самоиндукции препятствует увеличению I, т. е. направлен против тока I. 

Индуктивность прямого проводника невелика - создаваемое им поле рассеивается в окружающем пространстве. Индуктивность проводника в форме витка больше - поле концентрируется внутри витка. Индуктивность становится значительно больше, если проводник  состоит из n близко расположенных витков. В этом случае индукция магнитного поля в центре витков будет примерно в n раз больше, чем у одного витка, а поток в катушке с n витками будет ещё в n раз больше (складываются потоки через каждый виток) и, следовательно, индуктивность n таких витков будет в раз больше, чем у одного витка.

Так, внутри бесконечно длинной цилиндрической катушки, имеющей w витков на участке длиной l, магнитное поле однородно и величина индукции магнитного поля равна

m82

Поэтому магнитный поток через w витков на участке длиной l равен
m84

где S - площадь поперечного сечения катушки. Поток Ф пропорционален току I, а коэффициент пропорциональности, индуктивность этого участка катушки, равна
m85

Формулу (3) можно использовать для приближённого вычисления индуктивности цилиндрической катушки конечной длины l, если длина катушки значительно больше её диаметра. Для витков в центральной части катушки всё будет почти также, как и в бесконечной катушке, но на краях такой катушки поле, а значит и поток через витки на краях катушки будет меньше, чем в центре. Следовательно, индуктивность конечной катушки будет меньше, чем вычисленная по формуле (3). Чтобы магнитное поле каждого витка пронизывало все остальные витки катушки, используют сердечник с большой магнитной проницаемостью μ, собирающий и направляющий магнитное поле. Формула (3) объясняет, почему для получения большой индуктивности используют катушки с очень большим числом витков (несколько тысяч) на замкнутых ферромагнитных сердечниках (большое μ).